Determining the Neutrino Mass Hierarchy even if θ_{13} is too small

:: An interplay of collective effects and Earth matter effects on SN neutrinos ::

Basudeb Dasgupta
Tata Institute of Fundamental Research, Mumbai

In collaboration with Amol Dighe and Alessandro Mirizzi: hep-ph/0802.1481
Hierarchy Sensitivity, θ_{13} and Models

- Mass Hierarchy remains an important unknown parameter.
- Sensitivity of Next-Generation experiments like Neutrino Factory for hierarchy determination: $\sin^2 \theta_{13} > 10^{-3}$ to 10^{-4}
- What happens for even smaller θ_{13}?
- One could use other sub-dominant effects...
- 3σ determination with 23 years of data at a NF + 0.5 MT scintillation detector: de Gouvea & Winter (2005).
- With a very precise ($\sim 2\%$) measurement of Δ_{31} and 1MTyr data of atmospheric neutrinos HK can give a 2σ signal: Gandhi, Ghoshal, Goswami and Sankar (2008).

- Hierarchy determination is a difficult task if θ_{13} is too small.
- However small θ_{13} is typically likely to be a sign of some symmetry and we could be missing out a valuable hint towards that new symmetry, if we can’t determine the hierarchy...
- So what can be done?

Albright and Chen (2006)
• Claim: May be possible to determine the neutrino mass hierarchy at extremely small θ_{13} using galactic SN neutrinos.

• Crucially dependent on collective effects in SN.

• Neutrino detection a Liquid Argon Detector: Spectral Split.

• Antineutrino detection at two Water Cherenkov detectors: Earth Matter Effects.
Primary Fluxes from a SN

- ν_x and ν_y are linear combinations: $\cos \theta_{23} \, \nu_\mu + \sin \theta_{23} \, \nu_\tau$ etc.
- $E_e < E_{\bar{e}} < E_{x,y}$
- Mainly uncertainty in energy and luminosity of x and y “flavors”.
- F_e, $F_{\bar{e}}$, $F_{x,y}$ are the initial fluxes.
Collective Effects Redux

- For IH, exchange \(\nu_e \) and \(\nu_\gamma \) above the \(E_c \): Raffelt&Smirnov (2007).
- For IH, exchange all anti-\(\nu_e \) and anti- \(\nu_\gamma \).
- No collective effect for NH.

Duan, Fuller, Carlson, Qian, Pastor, Raffelt, Semikoz, Hannestad, Sigl, Wong, Smirnov, Abazajian, Beacom, Bell, Esteban-Pretel, Tomas, Fogli, Lisi, Marrone, Mirizzi, Dasgupta, Dighe …

- How stable and robust is this answer?
 - Small change in \(\theta_{13} \) does not affect the result.
 - Mu-tau effects can be ignored in cooling phase: Esteban-Pretel, Pastor, Raffelt, Sigl, Tomas (2007).
 - Only if the \(\nu_e \) and anti-\(\nu_e \) spectra were identical, the answer is quite different…but that is unlikely: Raffelt&Sigl (2007).
• At small θ_{13} the H-resonance is completely non-adiabatic.
• The L-resonance is always adiabatic.

Dighe & Smirnov (2000)
Mass Basis Fluxes reaching Earth from SN

Neutrinos

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>((F_x, F_x, F_e))</td>
<td>((F_x, F_e, F_x))</td>
</tr>
<tr>
<td>After Collective</td>
<td>((F_x, F_x, F_e))</td>
<td>((F_x, F_e, F_x) \parallel (F_x, F_x, F_e))</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>((F_x, F_e, F_x))</td>
<td>((F_x, F_e, F_x) \parallel (F_x, F_x, F_e))</td>
</tr>
</tbody>
</table>

Anti-Neutrinos

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_x, F_x, F_e))</td>
</tr>
<tr>
<td>After Collective</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_e, F_x, F_x))</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>((F_e, F_x, F_x))</td>
<td>((F_x, F_x, F_e))</td>
</tr>
</tbody>
</table>

Electron flavor: \(\nu_e = \cos \theta_{12} \nu_1 + \sin \theta_{12} \nu_2\)

Dasgupta & Dighe (2007)
SN spectra at Earth

Before

Split

After

Neutrinos

Antineutrinos
Spectral Split Signature in Neutrinos

- Spectral Split could be a signature for hierarchy determination at small θ_{13}: Duan, Fuller, Carlson Qian (2008).
- Spectral Split in neutrinos at $E_c \leq 10$ MeV.
- Challenging to observe at Liquid Argon detector 😞
- Main problem is that it appears at very low energy Choubey, Dasgupta, Dighe, Mirizzi (to appear).
Earth Matter Effects

- Flux of electron antineutrinos at shadowed and unshadowed detector are different combinations of ν_1 and ν_2.

<table>
<thead>
<tr>
<th>Flavor content in mass basis at</th>
<th>Normal Hierarchy</th>
<th>Inverted Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Flux</td>
<td>(F_e, F_x, F_x)</td>
<td>(F_x, F_x, F_e)</td>
</tr>
<tr>
<td>After Collective</td>
<td>(F_e, F_x, F_x)</td>
<td>(F_e, F_x, F_x)</td>
</tr>
<tr>
<td>After MSW (at Earth)</td>
<td>(F_e, F_x, F_x)</td>
<td>(F_x, F_x, F_e)</td>
</tr>
</tbody>
</table>

- But for IH it does not make any difference, both are “x”!
- $R = \frac{(F_e^{\text{shadowed}} - F_e^{\text{unshadowed}})}{F_e^{\text{unshadowed}}}$.
- R is zero for IH, but not NH.
- This distinguishes NH from IH.
Mass hierarchy at very small θ_{13}

- Two 0.4 MT water Cherenkov detectors – one shadowed, and other not shadowed by Earth
- Significant difference in events for NH, and none for IH.
- Works for arbitrarily small values of θ_{13} in contrast to previous literature, and vis-à-vis other experiments: Dasgupta, Dighe, Mirizzi (2008).

\begin{align*}
n_{13} & \leq 10^{-9} \\
L & = 10 \text{kpc} \\
2 \times 0.4 \text{ MT WC} \\
\text{Garching flux}
\end{align*}
Some concluding remarks

- Earth Matter Effects are a robust and model-independent signature.
- Sensitivity in hierarchy and only “ball-park” estimate of θ_{13}.
- Spectral Split is quite challenging to observe.
- Even turbulence and stochastic density fluctuations don’t affect these results (since θ_{13} is too small for ordinary matter effects to come into play).
No Degeneracy between Scenarios

Neutrinos

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>θ_{13}</th>
<th>Earth Effects</th>
<th>Shock Effects</th>
<th>Burst Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A NH</td>
<td>Large</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>B IH</td>
<td>Large</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C NH</td>
<td>Small</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>D IH</td>
<td>Small</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Anti-Neutrinos

<table>
<thead>
<tr>
<th>Hierarchy</th>
<th>θ_{13}</th>
<th>Earth Effects</th>
<th>Shock Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A NH</td>
<td>Large</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B IH</td>
<td>Large</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C NH</td>
<td>Small</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>D IH</td>
<td>Small</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>