Future Constraints on, and from Lepton Universality

@ Melbourne Neutrino Theory Workshop
June 2, 2008

Tatsu Takeuchi
takeuchi@vt.edu

Virginia Tech
Collaborators

- Will Loinaz (Amherst College)
- Peter Fisher (MIT)
- Shawn Henderson (MIT)
- Alexey Pronin (Virginia Tech)
- Yee Kao (Virginia Tech)
Future high statistics neutrino experiments will have the precision to probe new physics at the TeV scale.

- Fixed target ν-scattering experiments, e.g. NuSOnG.

- Long baseline ν-oscillation experiments, e.g. Fermilab\rightarrowHyper-Kamiokande.
Example: R-parity Violation

\[W_R = \frac{1}{2} \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k + \frac{1}{2} \lambda''_{ijk} \hat{U}_i \hat{D}_j \hat{D}_k , \]

| \begin{array}{c|cc|c|}
| \lambda_{231} | & \text{NuSOng 95%} & \text{current 95%} \\
| \hline
| | & \frac{M_{\tilde{\tau}_L}}{100 \text{ GeV}} & 0.07 \frac{M_{\tilde{\mu}_R}}{100 \text{ GeV}} \\
| \hline
| | & 0.05 & \frac{M_{\tilde{\tau}_L}}{100 \text{ GeV}} & 0.07 \frac{M_{\tilde{\mu}_R}}{100 \text{ GeV}} \\
| \hline
| | & \frac{M_{\tilde{\tau}_L}}{100 \text{ GeV}} & 0.05 \frac{M_{\tilde{\tau}_L}}{100 \text{ GeV}} & 0.06 \frac{M_{\tilde{\mu}_R}}{100 \text{ GeV}} \\
| \hline
| \end{array} |
RPV Contribution to ν-Scattering

$\nu_\mu \rightarrow \lambda_{231} \rightarrow e_R^- \rightarrow \tilde{\tau}_L \rightarrow \lambda_{231}^* \rightarrow \nu_\mu$

$\nu_\mu \rightarrow \lambda'_{211} \rightarrow d_{R/L} \rightarrow \tilde{d}_{L/R} \rightarrow \lambda'_{211}^* \rightarrow \nu_\mu$
Current bounds on RPV come from CC lepton universality measurements:

\[R_{\tau} = \frac{B(\tau \rightarrow e\nu_e\nu_\tau)}{B(\tau \rightarrow \mu\nu_\mu\nu_\tau)} = 1.028 \pm 0.004 \]

\[\rightarrow g_\mu/g_e = 1.0021 \pm 0.0016 \]

\[R_{\pi} = \frac{B(\pi \rightarrow e\nu_e)}{B(\pi \rightarrow \mu\nu_\mu)} = (1.231 \pm 0.004) \times 10^{-4} \]

\[\rightarrow g_\mu/g_e = 1.0003 \pm 0.0021 \]
RPV contribution to τ and π decays

$$\lambda_{231}^- \rightarrow \bar{\nu}_\mu \lambda_{231}^* \rightarrow \mu^- \bar{\nu}_\mu$$

$$\tilde{e}_R \rightarrow \bar{\nu}_\mu \lambda_{231}^* \rightarrow \mu^- \bar{\nu}_\mu$$
Current bounds on CC lepton universality can be expected to be improved dramatically in the near future. In the case of π-decay:

- PIENU@TRIUMF aims to reduce the error on R_π by a factor of 5.
- PEN@PSI aims to reduce the error on R_π by a factor of 6.
- Combined, the error on R_π will be reduced by a factor of 8.
In the Near Future 2:

τ-decay:

- Babar aims to reduce the errors on ALL one-prong τ branching fractions by factors of 3.

- Belle?

W-decay:

- LEP2 sees 2σ difference in $B(W \rightarrow \tau \nu_\tau)$ vs. $B(W \rightarrow \mu \nu_\mu), B(W \rightarrow e \nu_e)$.

- Tevatron Run 2?
Comparison of Babar and Belle:

- Integrated Luminosities:
 - Babar: 557 fb^{-1}
 (data taking ended April 7, 2008)
 - Belle: $>800 \text{ fb}^{-1}$ and growing

- τ events
 - Babar: ~500 million τ pairs
 - Belle: ~700 million τ pairs and growing

If Belle can analyze their data, the improvement will be much better!
Potential Impact on RPV limits

- Babar

\[|\lambda_{231}| < 0.07 \left(\frac{M_{\tilde{e}_R}}{100 \text{ GeV}} \right) \Rightarrow 0.03 \left(\frac{M_{\tilde{e}_R}}{100 \text{ GeV}} \right) \]

- PIENU+PEN

\[|\lambda'_{211}| < 0.06 \left(\frac{M_{\tilde{d}_R}}{100 \text{ GeV}} \right) \Rightarrow 0.01 \left(\frac{M_{\tilde{d}_R}}{100 \text{ GeV}} \right) \]

Actual bounds could be stronger or weaker depending on whether the measured values are higher or lower than the SM.
Allow the CC couplings to depend on lepton flavor:

\[\mathcal{L} = \sum_{\ell=e,\mu,\tau} \frac{g_{\ell}}{\sqrt{2}} W_{\mu}^{+} \bar{\nu}_{\ell} \gamma^{\mu} \left(\frac{1 - \gamma_{5}}{2} \right) \ell^{-} + \text{h.c.} \]

Fit all CC particle decay data with the parameters \(\epsilon_{\ell}, \ell = e, \mu, \tau. \)

\[g_{\ell} = g \left(1 - \frac{\epsilon_{\ell}}{2} \right) \]
Comment on the Tevatron:

- The Tevatron ellipse is based on:
 - 4 pb$^{-1}$ of data from CDF Run 1
 - 18 pb$^{-1}$ of data from D0 Run 1
 - 72 pb$^{-1}$ of data from CDF Run 2

- Total Integrated Luminosity delivered to each detector was:
 - Run 1: >160 pb$^{-1}$
 - Run 2: \sim4000 pb$^{-1}$ and growing
CDF

- ~200 pb$^{-1}$ of data for W Mass
 - $63964 W \rightarrow e\nu$, $51228 W \rightarrow \mu\nu$
- ~350 pb$^{-1}$ of data for W Width
 - $230185 W$ candidates

D0

- 177 pb$^{-1}$ of data for W width
 - $75910 W \rightarrow e\nu$ candidates
- 96 pb$^{-1}$ of data
 - $62286 W \rightarrow \mu\nu$ candidates
With improved π and τ branching fractions:
With improved τ lifetime:
\[\nu = \nu_{\text{light}} \cos \theta + \nu_{\text{heavy}} \sin \theta \]
\[\chi = -\nu_{\text{light}} \sin \theta + \nu_{\text{heavy}} \cos \theta \]

\[Z_{\nu\nu} = Z_{\nu\text{light}} \nu_{\text{light}} \cos^2 \theta \]
\[+ 2Z_{\nu\text{light}} \nu_{\text{heavy}} \sin \theta \cos \theta \]
\[+ Z_{\nu\text{heavy}} \nu_{\text{heavy}} \sin^2 \theta \]

\[W_{\ell\nu} = W_{\ell\nu_{\text{light}}} \cos \theta + W_{\ell\nu_{\text{heavy}}} \sin \theta \]

\[Z_{\nu_{\ell}\nu_{\ell}} (1 - \epsilon_{\ell}) \quad W_{\ell\nu_{\ell}} \left(1 - \frac{\epsilon_{\ell}}{2}\right) \]
With LEP/SLD data:

Fit with S, T, ε_e, and ε_μ.
Potential Impact of NuSOng:

Fit with S, T, ε_e, and ε_μ.
Conclusions:

- Bounds on CC Lepton Universality can be expected to be improved dramatically in the near future by new data (PIENU, PEN) and the analysis of already existing ones (Babar, Belle, Tevatron).

- Such improvements will place strong constraints on certain types of New Physics which will be difficult to beat even with future high statistics ν experiments. (e.g. certain R-parity violating couplings)
Conclusions continued:

- When combined with future high statistics ν experiments, they can yield very stringent bounds on other types of New Physics. (e.g. neutrino mixing with heavy gauge singlet states)

- When are the Belle and Tevatron Run 2 analyses coming out?