To Split Or Not To Split

Part I

Giovanni Villadoro
Why **SUSY** is the most compelling framework for physics beyond the SM (@ TeV scale)

- The only known perturbative solution to the hierarchy problem
- May implement the WIMP miracle
- Predict gauge coupling unification
The LEP legacy:

1 – No SUSY particles below ~100 GeV
The LEP legacy:

1 – No SUSY particles below ~100 GeV

2 – SM Higgs > 114.4 GeV

\[\delta v^2 \propto m_s^2 \]

\[\delta m_h^2 \propto v^2 \log m_s^2 \]

The little hierarchy problem
⇒ need to go beyond the MSSM
Tevatron:

1 – Pushed the bounds on sparticles to few hundred GeV in several models
Tevatron:

1 – Pushed the bounds on sparticles to few hundred GeV in several models

2 – Killed last corners of “natural” MSSM
 (e.g. hidden Higgs $h \rightarrow \chi_0 \chi_0 \rightarrow \gamma \gamma GG$
 w/ $m_H \sim 95$ GeV)
1 – Very strong bounds on colored particles
LHC-7

2 – An awkward Higgs mass
What the LHC has done to SUSY?

Pre-LEP

\[
\begin{align*}
\bar{g} &\rightarrow \tilde{t}_2 \tilde{b}_2 \\
\tilde{d}_L \tilde{u}_L &\rightarrow \tilde{u}_R \tilde{d}_R \\
\tilde{N}_4 &\rightarrow \tilde{C}_2 \\
\tilde{N}_3 &\rightarrow \tilde{C}_2 \\
\tilde{N}_2 &\rightarrow \tilde{C}_1 \\
\tilde{N}_1 &\rightarrow \tilde{C}_1
\end{align*}
\]

Post-LHC7

\[
\begin{align*}
\bar{g} &\rightarrow \tilde{t}_2 \tilde{b}_2 \\
\tilde{d}_L \tilde{u}_L &\rightarrow \tilde{u}_R \tilde{d}_R \\
\tilde{e}_L &\rightarrow \tilde{\nu}_e \\
\tilde{\tau}_2 &\rightarrow \tilde{\nu}_\tau \\
\tilde{\bar{e}}_R &\rightarrow \tilde{\nu}_\tau \\
\tilde{\bar{e}}_R &\rightarrow \tilde{\tau}_1
\end{align*}
\]
How well SUSY unifies?

@1-loop
How well SUSY unifies?

@2-loop
How well SUSY unifies?

SM

MSSM

@2-loop x9!

@2-loop
At the Crossroads

- Split Supersymmetry
- Standard Model
- Multiverse
- Naturalness
- Large Extra Dimensions
- Supersymmetry
- Technicolor
What naturalness wants

1 – light μ-term (<~ 250 GeV)
2 – light stops (<~400 GeV)
3 – not too heavy gluino (<~2 TeV)

What simple model building likes

1 – degenerate squarks
2 – hierarchish colored/uncolored spectrum
3 – some very light sparticle
Lesson #1: Gluino Sucks

\[\partial_t m_s^2 = -\frac{32 \alpha_s}{3 \frac{\pi}{4}} |M_3|^2 + \ldots \]
Lesson #2: The Higgs needs a fix

- Singlet (perturbative coupling may still work)
- Extra gauge group (U(1)')
Lesson #2: The Higgs needs a fix

- Singlet (perturbative coupling may still work)
- Extra gauge group (U(1)’...)

Lesson #3: Yukawa running

Running from high scales with universal squark masses:

\[m_{\text{stop}} \sim \frac{1}{2} m_{\text{squarks}} \]
Lesson #2: The Higgs needs a fix

- Singlet (perturbative coupling may still work)
- Extra gauge group (U(1)'....)

Lesson #3: Yukawa running

Running from high scales with universal squark masses:

\[m_{\text{stop}} \sim \frac{1}{2} m_{\text{squarks}} \]

Lesson #4: Universal gaugino masses

\[M_3 \sim \frac{\alpha_3}{\alpha_1} M_1 \sim 7 M_1 \]
Scenario #1: Universal squark masses

Best solution to flavor problem is still MFV-like scalar spectrum
(as in gauge/gaugino mediation, anomaly mediation, etc...)
Scenario #1: Universal squark masses

Best solution to flavor problem is still MFV-like scalar spectrum (as in gauge/gaugino mediation, anomaly mediation, etc...)

The Clash:
- Very strong bounds on first gen. squarks!
- Light stop required by naturalness!
Scenario #1: Universal squark masses

Best solution to flavor problem is still MFV-like scalar spectrum (as in gauge/gaugino mediation, anomaly mediation, etc...)

The Clash:
- Very strong bounds on first gen. squarks!
- Light stop required by naturalness!

option #1: big RGE running \((m_{squarks} \sim 2 \, m_{stop}) \)

option #2: small running w/ good boundary conditions

\[
m_s^2 = m_0^2 (1+c \, |Y|^2)
\]
One of the last natural SUSY model?

1) MSSM
2) Singlet (to raise Higgs mass and to solve μ-problem)
3) Low scale gauge mediation (to minimize gluino effects)
4) Non universal gaugino masses
 (to avoid too heavy colored particles)
5) Direct coupling Singlet-Mediators
 (to generate negative singlet mass squared and A-terms)
6) Direct coupling Higgs-Mediators
 (to generate extra negative contribution to stop mass and A-terms)
A working spectrum?

- squarks (>~1.2 TeV)
- gluino (>~1 TeV)
- stop 2 (~500)
- neutralinos (>400)
- stop 1 (~200)
- gravitino (~0)
A working spectrum?

- squarks (>~1.2 TeV)
- gluino (>~1 TeV)
- neutralinos (>400)
- stop 2 (~500)
- stop 1 (~200)
- gravitino (~0)

1) Is it really natural? 2) How easy is to model build?
Scenario #2: Split families models

- **1st- 2nd family**
- **gluino**
- **3rd family**
- **higgsinos**

The 3rd generation is different

E.g. first two generation couple more strongly to SUSY breaking

Dimopoulos Giudice '95, Pomarol Tommasini '95

...Craig Dimopoulos Gherghetta '12
Split Families Models

to be discovered soon!
Scenario #3: Exotic: RPV, photini, ...

RPV: Graham, Kaplan, Rajendran, Saraswat '12

Photini: Baryakhtar, Craig, Van Tilburg '12