Implications of a Light Higgs in Composite Models

Alex Pomarol, UAB (Barcelona)
Implications of a Light Higgs in Composite Models

Alex Pomarol, UAB (Barcelona)
LHC Higgs searches have presented hints for a 125 GeV Higgs...

... and more to come very soon!
Purpose of my talk here:

What are the implications of a 125 GeV Higgs in models in which the Higgs is a Composite Pseudo-Goldstone?
Composite PGB Higgs

inspired by QCD where one observes that the (pseudo) scalar are the lightest states

Spectrum:

- GeV ρ
- 100 MeV π

Are Pseudo-Goldstone bosons (PGB)

Mass protected by the global QCD symmetry!

$\pi \rightarrow \pi + \alpha$
Can the light Higgs be a kind of a pion from a new strong sector?

We’d like the spectrum of the new strong sector to be:

\[\text{Pseudo-Goldstone bosons (PGB)} \]

Minimal model: Spontaneous breaking in the strong sector:

\[\text{SO}(5) \rightarrow \text{SO}(4) \]

4 Goldstones

Higgs doublet
Light Higgs since its mass comes from explicit breaking of the global symmetry due to the SM couplings:

\[V(h) = \frac{g_{SM}^2 m_{\rho}^2}{16\pi^2} h^2 + \cdots \]

Difficult to get predictions due to the intractable strong dynamics!
AdS/CFT approach

Strongly-coupled systems in the Large N_c
Large $\lambda \equiv g^2 N_c$

Weakly-coupled Gravitational systems in higher-dimensions

Very **useful** to derive properties of **composite states** from studying weakly-coupled fields in warped extra-dimensional models
Holographic composite PGB Higgs model

AdS\(_5\) throat

\[ds^2 = \frac{L^2}{z^2} \left[dx^2 + dz^2 \right] \]

Holo. coordinate \(z \sim 1/E \)

hard/soft wall

Mass gap \(\sim \text{TeV} \)

Agashe, Contino, A.P.
Holographic composite PGB Higgs model

SO(5) gauge theory in a AdS$_5$ throat

\[ds^2 = \frac{L^2}{z^2} [dx^2 + dz^2] \]

Holo. coordinate $z \sim 1/E$

hard/soft wall

Mass gap \sim TeV

Agashe, Contino, A. P.
Holographic composite PGB Higgs model

SO(5) gauge theory in a AdS_5 throat

$\frac{ds^2}{z^2} = \frac{L^2}{z^2} [dx^2 + dz^2]$

Holo. coordinate $z \sim 1/E$

Mass gap \sim TeV

Symmetry: \textbf{SO}(4)

Breaking of symmetry by boundary conditions

Agashe, Contino, A.P.
Higgs = 5th component of the SO(5)/SO(4) gauge bosons
(Gauge-Higgs unification, Hosotani Mechanism, ...)

→ Normalizable modes = Composite
Simple geometric approach to fermion masses

\[\psi(z) \]

1st & 2nd family
(Elementary)

3rd family
(\textbf{Top} = Most Composite)

hard/soft wall
$m_{\rho} = 2.5$ TeV , $f = 500$ GeV
For a 125 GeV Higgs, the fermionic resonances of the top are light \(\sim 600 \text{ GeV} \)
Simpler derivation of the connection:

Light Higgs - Light Resonance

- Deconstruction: Matsedonskyi, Panico, Wulzer; Redi, Tesi 12
- Weinberg Sum Rules: Marzocca, Serone, Shu; AP, Riva 12

As Das, Guralnik, Mathur, Low, Young 67

for the charged pion mass:

\[m_{\pi^+}^2 - m_{\pi^0}^2 \approx \frac{3\alpha}{2\pi} m_{\rho}^2 \log 2 \approx (37 \text{ MeV})^2 \]

Exp. (35 MeV)^2

quite successful!
Higgs potential

Gauge contribution (limit $g'=0$):

$$V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W$$

$$\Pi_W \simeq \frac{p^2}{g^2} + \frac{\sin^2 h/f}{2} \left[\langle J_\hat{a} J_\hat{a} \rangle - \langle J_a J_a \rangle \right]$$

Encode the strong sector contribution to the gauge propagator in the h-background.
Easy derivation using **spurion techniques**:

\[
\mathcal{L} = \mathcal{L}_{\text{strong}} + \mathcal{L}_{\text{SM}} + J_{\text{strong}}^\mu W_\mu
\]

The most general SO(5) invariant action as a function of \(A_\mu \) after integrating out the strong sector:

\[
\mathcal{L}_{\text{eff}} = \frac{1}{2} P_{\mu\nu} \left[\Pi_0(p) \text{Tr} [A_\mu A_\nu] + \Pi_1(p) \sum A_\mu A_\nu \Sigma^T \right] + \mathcal{O}(A^3)
\]

parametrizes the coset \(\text{SO}(5)/\text{SO}(4) \) (equivalents \(\text{SO}(4) \) vacuum)

\[\Sigma = \Sigma_0 e^{\Pi/f_\pi}, \quad \Sigma_0 = (0, 0, 0, 0, 1)\]
\[\mathcal{L}_{\text{eff}} = \frac{1}{2} P_{\mu\nu} \left[\Pi_0(p) \text{Tr}[A^\mu A^\nu] + \Pi_1(p) \Sigma A^\mu A^\nu \Sigma^T \right] + \mathcal{O}(A^3) \]

\[A^\mu = W^\mu \]

\[\langle \Sigma \rangle = (0, 0, 0, \sin h/f, \cos h/f) \]

\[\langle \Sigma \rangle = (0, 0, 0, 0, 1) \]

\[\Pi_W = \Pi_0 + \frac{\Pi_1}{4} \sin^2 \frac{h}{f}, \quad \Pi_a = \langle J_a J_a \rangle = \Pi_0 \]

\[\Pi_{\hat{a}} = \langle J_{\hat{a}} J_{\hat{a}} \rangle = \Pi_0 + \frac{1}{2} \Pi_1 \]

\[\Pi_0 \simeq \frac{p^2}{g^2} \]

\[\Pi_W \simeq \frac{p^2}{g^2} + \frac{\sin^2 h/f}{2} \left[\langle J_{\hat{a}} J_{\hat{a}} \rangle - \langle J_a J_a \rangle \right] \]

\[A^\mu = W^\mu \]

\[\langle \Sigma \rangle = (0, 0, 0, \sin h/f, \cos h/f) \]

\[\langle \Sigma \rangle = (0, 0, 0, 0, 1) \]
Higgs Mass from Weinberg Sum Rules

Gauge contribution:

\[V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W = \frac{1}{2} m_h^2 h^2 + \cdots \]

\[\Pi_1 = 2 [\langle J_\hat{a} J_{\hat{a}} \rangle - \langle J_a J_a \rangle] = f^2 + 2p^2 \sum_{n} \frac{F_{a_n}^2}{p^2 + m_{a_n}^2} - 2p^2 \sum_{n} \frac{F_{\rho_n}^2}{p^2 + m_{\rho_n}^2} \]

Large N

\[= \sum_n \]
Higgs Mass from Weinberg Sum Rules

Gauge contribution:

\[V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W = \frac{1}{2} m_h^2 h^2 + \cdots \]

\[\Rightarrow m_h^2 \approx \frac{9g^2}{2f^2} \int \frac{d^4p}{(2\pi)^4} \frac{\Pi_1(p)}{p^2} \]

\[\Pi_1 = 2 [\langle J_\hat{a} J_\hat{a} \rangle - \langle J_a J_a \rangle] = f^2 + 2p^2 \sum_n^{\infty} \frac{F_{a_n}^2}{p^2 + m_{a_n}^2} - 2p^2 \sum_n^{\infty} \frac{F_{\rho_n}^2}{p^2 + m_{\rho_n}^2} \]

Procedure:

1) Demand convergence of the integral:

\[\lim_{p^2 \to \infty} \Pi_1(p) = 0 , \quad \lim_{p^2 \to \infty} p^2 \Pi_1(p) = 0 . \quad \text{“Weinberg Sum Rules”} \]
Higgs Mass from Weinberg Sum Rules

Gauge contribution:

\[V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W = \frac{1}{2} m_h^2 h^2 + \cdots \]

\[\Pi_1 = 2 \left[\langle J_\alpha J_\alpha \rangle - \langle J_a J_a \rangle \right] = f^2 + 2p^2 \sum_{n} \frac{F_{a_n}^2}{p^2 + m_{a_n}^2} - 2p^2 \sum_{n} \frac{F_{\rho_n}^2}{p^2 + m_{\rho_n}^2} \]

Procedure:

1) Demand convergence of the integral:

\[\lim_{p^2 \to \infty} \Pi_1(p) = 0 \quad \lim_{p^2 \to \infty} p^2 \Pi_1(p) = 0 \quad \text{“Weinberg Sum Rules”} \]

\[\left[\langle J_\alpha J_\alpha \rangle - \langle J_a J_a \rangle \right] \sim \frac{\langle \mathcal{O} \rangle}{p^{d-2}} + \cdots \]

Just from the OPE at large \(p \)

\(d = \text{Dim}[\mathcal{O}] \quad \Rightarrow \text{symmetry breaking operator} \)

\(\Rightarrow \text{WSR = demand } d > 4 \)
Higgs Mass from Weinberg Sum Rules

Gauge contribution:

\[V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W = \frac{1}{2} m_h^2 h^2 + \cdots \]

\[\Pi_1 = 2 [\langle J_\alpha J_\alpha \rangle - \langle J_a J_a \rangle] = f^2 + 2p^2 \sum_n \frac{F_{a_n}^2}{p^2 + m_{a_n}^2} - 2p^2 \sum_n \frac{F_{\rho_n}^2}{p^2 + m_{\rho_n}^2} \]

Procedure:

1) Demand convergence of the integral:

\[\lim_{p^2 \to \infty} \Pi_1(p) = 0 \,, \quad \lim_{p^2 \to \infty} p^2 \Pi_1(p) = 0 \, \text{“Weinberg Sum Rules”} \]

E.g. in QCD:

\[\Pi_{LR}(p) = \Pi_V - \Pi_A \to \langle q\bar{q} \rangle^2 / p^4 \]
Higgs Mass from Weinberg Sum Rules

Gauge contribution:

\[V(h) = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \log \Pi_W = \frac{1}{2} m_h^2 h^2 + \cdots \]

\[\Pi_1 = 2 [\langle J_\hat{a} J_\hat{a} \rangle - \langle J_a J_a \rangle] = f^2 + 2p^2 \sum_n^{\infty} \frac{F_{a_n}^2}{p^2 + m_{a_n}^2} - 2p^2 \sum_n^{\infty} \frac{F_{\rho_n}^2}{p^2 + m_{\rho_n}^2} \]

Procedure:

1) Demand convergence of the integral:

\[
\lim_{p^2 \to \infty} \Pi_1(p) = 0 , \quad \lim_{p^2 \to \infty} p^2 \Pi_1(p) = 0 . \quad \text{“Weinberg Sum Rules”}
\]

2) Correlators dominated by the lowest resonances

(minimal number to satisfy WSR)
Result: two resonances needed: \(\rho \) and \(a_1 \)

\[
\Pi_1(p) = \frac{f^2 m_\rho^2 m_{a_1}^2}{(p^2 + m_\rho^2)(p^2 + m_{a_1}^2)}
\]

\[
m_h^2 \simeq \frac{9g^2 m_\rho^2 m_{a_1}^2}{64\pi^2 (m_{a_1}^2 - m_\rho^2)} \log \left(\frac{m_{a_1}^2}{m_\rho^2} \right)
\]

Similar result as the electromagnetic contribution to the charged pion mass
Similarly, for the top contribution...

\[\mathcal{L} = \mathcal{L}_{\text{strong}} + \mathcal{L}_{\text{SM}} + J_{\text{strong}}^\mu W_\mu + \mathcal{O}_{\text{strong}} \cdot \psi_{\text{SM}} \]

we must specify which rep of SO(5)

\[\text{MCHM}_5 \equiv \text{Rep}[\mathcal{O}] = 5 \]

Top contribution to the Higgs potential:

\[V(h) = -2N_c \int \frac{d^4p}{(2\pi)^4} \log \left[-p^2 (\Pi^{tL} \Pi^{tR}) - |\Pi^{tLtR}|^2 \right] \]

Encode the strong sector contribution to the top propagator in the h-background
\[V(h) = -2N_c \int \frac{d^4p}{(2\pi)^4} \log \left[-p^2 \left(\Pi_{tL} \Pi_{tR} \right) - |\Pi_{tL tR}|^2 \right] \]

\[= -m^2 h^2 + \lambda_h h^4 + \cdots \]

Triggers EWSB!
Higgs mass contribution:

\[m_h^2 \sim \frac{8N_c v^2}{f^4} \int \frac{d^4p}{(2\pi)^4} \left[\|M_1^t\|^2 + \frac{1}{4} (\Pi_{1L}^{tL})^2 + (\Pi_{1R}^{tL})^2 \right] \]

\[
\begin{align*}
\Pi_{1L}^{tL}(p) &= \Pi_{Q_1}^L(p) - \Pi_{Q_4}^L(p), \\
\Pi_{1R}^{tR}(p) &= \Pi_{Q_1}^R(p) - \Pi_{Q_4}^R(p), \\
M_1^t(p) &= M_{Q_1}(p) - M_{Q_4}(p).
\end{align*}
\]

Large N: \[\Pi_{Q_4}^L(p) = \sum_n \frac{|F_{Q_4}^{L(n)}|^2}{p^2 + m_{Q_4}^{(n)}} , \quad \Pi_{Q_1}^L(p) = \sum_n \frac{|F_{Q_1}^{L(n)}|^2}{p^2 + m_{Q_1}^{(n)}} , \]

and similarly for \(\Pi_{Q_4,1}^R \) with the replacement \(L \rightarrow R \), while

\[M_{Q_4}(p) = \sum_n \frac{F_{Q_4}^{L(n)} F_{Q_4}^{R(n)\ast} m_{Q_4}^{(n)}}{p^2 + m_{Q_4}^{(n)}} , \quad M_{Q_1}(p) = \sum_n \frac{F_{Q_1}^{L(n)} F_{Q_1}^{R(n)\ast} m_{Q_1}^{(n)}}{p^2 + m_{Q_1}^{(n)}} . \]
Demanding again WSR:

\[
\lim_{p \to \infty} M_1^t(p) = 0
\]

\[
\lim_{p \to \infty} p^n \Pi_1^{tL,R}(p) = 0 \ (n = 0, 2)
\]

... being fulfilled with the minimal set of resonances, two in this case, \(Q_1\) and \(Q_4\):

\[
\Pi_1^{tL,R} = |F_{Q_4}^{L,R}|^2 \frac{(m_{Q_4}^2 - m_{Q_1}^2)}{(p^2 + m_{Q_4}^2)(p^2 + m_{Q_1}^2)}
\]

\[
M_1^t(p) = |F_{Q_4}^L F_{Q_4}^{R*}| \frac{m_{Q_4} m_{Q_1} (m_{Q_4} - m_{Q_1} e^{i\theta})}{(p^2 + m_{Q_4}^2)(p^2 + m_{Q_1}^2)} \left(1 + \frac{p^2}{m_{Q_4} m_{Q_1} m_{Q_4} - m_{Q_1} e^{i\theta}}\right)
\]
WSR + Minimal set of resonances (Q_1 and Q_4) + proper EWSB

\[m_h^2 \sim \frac{N_c}{\pi^2} \left[\frac{m_t^2}{f^2} \frac{m_{Q_4}^2}{m_{Q_4}^2 - m_{Q_4}^2} \log \left(\frac{m_{Q_1}^2}{m_{Q_4}^2} \right) \right] \]

For a 125 GeV Higgs:
\[m_h^2 \simeq \frac{N_c}{\pi^2} \left[\frac{m_t^2}{f^2} \frac{m_{Q_4}^2 m_{Q_1}^2}{m_{Q_1}^2 - m_{Q_4}^2} \log \left(\frac{m_{Q_1}^2}{m_{Q_4}^2} \right) \right] \]

For a 125 GeV Higgs:

Also for other representations:

\[\text{MCHM}_{10} \equiv \text{Rep}[\mathcal{O}] = 10 \]
At the LHC...

If a 125 GeV Higgs is confirmed...
At the LHC...

If a 125 GeV Higgs is confirmed...

look for color vector-like fermions in the 4 or 1 of SO(4):

EM charges: $5/3, 2/3, -1/3$
Color vector-like fermions with charge 5/3:

If this fermion is light, it can be double produced:

same-sign di-leptons

Contino, Servant
Mrazek, Wulzer
Aguilar-Saavedra, Dissertori, Furlan, Moorgat, Nef
But also deviations from SM Higgs couplings expected:

\[\bar{f}_L f_R \sin^{1+m} \frac{h}{f} \cos^n \frac{h}{f} \quad (m, n = 0, 1, 2, \ldots) \]

depending on the embedding of the fermions (n=0,1,...) and v/f
Conclusions

Probably **Nature** has chosen a light Higgs for EWSB (>99% CL)

- Composite Higgs as a PGB a natural possibility (Higgs mass at the loop level)
- A 125 GeV composite Higgs implies either from AdS/CFT, Weinberg Sum rules, deconstructed models:

 Fermionic colored vector-like resonances (either $Q^{em} = 5/3, 2/3, -1/3$) with masses

 $\sim 500-700$ GeV

 Hope to see them at the LHC !